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Abstract

In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the
transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th
order spaces in two and three dimensions and 23rd order spaces in one dimension. The method
combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial
discretization, locally defined solution bounds, element-based flux correction, and non-linear local
mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain
and understand the behavior of different parts of the method. Convergence tests in space indicate
that high-order accuracy is achieved. Numerical results from several benchmarks in two and three
dimensions are also reported.

1 Introduction

We are interested in Maximum-Principle Preserving (MPP) high-order finite element discontinuous
Galerkin (DG) discretizations of the transport equation. It is known that the high polynomial degree
nature of such discretizations is prone to monotonicity violations. While small oscillations could be
accepted in some cases, in many applications they can lead to unphysical values, e.g., values outside
of [0, 1] should not occur for material volume fractions in the context of multi-material simulations.
Since it is impossible to achieve both monotonicity and high-order accuracy by a linear method [6],
one approach to achieve both is to develop a non-linear method that blends both high and low (first
order) solutions [12,13,15].

This paper is motivated by the previous work for MPP high-order finite element ALE remap
[2]. While the FCT method presented in [2] (denoted by DG-FCT throughout this manuscript) is
formally MPP and satisfactory up to Q3 finite elements, using higher order polynomial spaces leads
to oscillations as the ones shown in Figure 1. The main cause of these oscillations is that the sparsity
pattern of the DG-FCT advection matrix includes a high number of degrees of freedom, causing high
variations in the definition of maximum and minimum admissible values. It is clear that special effort
is needed to address the case of higher order (greater than Q3) polynomial spaces.

In this paper we address the aforementioned issue by presenting a new FCT-like MPP method that
is applicable to both advection remap and the transport equation. After reviewing the underlying DG
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(a) Q3 finite elements (b) Q5 finite elements (c) Q7 finite elements

Figure 1: Example of the problematic behavior of the DG-FCT method on a 1D advection problem
with refinement in polynomial order. All solutions are within their original [0, 1] bounds.

finite element discretization and the DG-FCT method, we introduce the concept of localized stencils
that define tighter bounds for each degree of freedom. This is combined with an element-based FCT
formulation (denoted DG-EFCT). In DG-EFCT, instead of adjusting all incoming fluxes, one adjusts
the value at each degree of freedom, causing a mass error in each cell. These mass errors are corrected
by a sub-zonal mass redistribution process that results in a non-linear problem to be solved in each
cell.

The remainder of this manuscript has the following organization. In Section 2 we review the basic
transport equation we are interested in solving as well the general high-order DG formulation (which is
non-MPP). Low order (or 1st order) MPP methods are the foundations for any non-linear, high-order
FCT method and in Section 3 we show that the choice of basis functions in the DG formulation has a
large effect on the quality of the low-order MPP method, and in particular, that use of the Bernstein
polynomials yields a better low-order method than the traditional Gauss-Legendre or Gauss-Lobatto
bases. Review of the DG-FCT approach in the context of high-order DG, followed by description
of the main challenge this paper addresses, is presented in Section 4. In Section 5 we present a
“localized” DG-FCT method which uses a reduced order stencil for computing bounds. In Section 6
we review the DG-EFCT approach. Unlike DG-FCT, DG-EFCT does not naturally conserve mass, so
an additional correction step is required. We describe two approaches for recovering mass conservation,
one based on a uniform (element-wise) flux rescaling (DG-EFCT-U) and one based on a non-linear
mass redistribution solve (DG-EFCT-N). Section 7 describes how the new methods can be used for
the purposes of ALE remap, where the velocity field is interpreted as the mesh displacement field.
Finally, in Section 8 we present numerical results on a set 2D and 3D benchmark problems.

2 Preliminaries

We consider the transport equation given by

∂tu(x, t) = ∇ · (v(x, t)u(x, t)), ∀(x, t) ∈ Ω× [0, T ], (1a)

u(x, t = 0) = u0(x), ∀x ∈ Ω, (1b)
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where Ω ⊂ Rd is an open domain, 0 < T ∈ R is the final time, u : Ω × [0, T ] → R is the transported
solution, v : Ω × [0, T ] → Rd is divergence-free velocity field with d ∈ {1, 2, 3} being the spatial
dimension, and u0 : Ω → R is the initial condition. In this study we consider periodic boundary
conditions for 1D problems, and v(x ∈ ∂Ω) · n = 0 for 2D and 3D problems.

It is our aim to obtain a solution that preserves the maximum principle locally. Given a finite
element solution unh =

∑
i φiU

n
i at time t = tn, the solution un+1

h =
∑

i φiU
n+1
i of a Maximum-

Principle Preserving (MPP) method is said to satisfy the discrete maximum principle locally if

min
j∈Ni

Unj =: Umin
i ≤ Un+1

i ≤ Umax
i := max

j∈Ni

Unj , ∀i, (2)

where Ni defines some neighborhood of the i-th degree of freedom (DOF). Conventionally, Ni is
defined through the sparsity pattern of the discrete advection operator. If continuous Galerkin finite
elements are used, this sparsity pattern is given by the support of the i-th shape function, φi. With
discontinuous Galerkin finite elements, this sparsity pattern consists of all DOFs on the given cell and
on adjacent cells sharing a face with it.

2.1 High-Order non-MPP Spatial Discretization

Consider a computational mesh Th with internal faces Fh. We define the discontinuous finite dimen-
sional space Xh = {φ(x) ∈ L2(Ω) : φ|K ∈ Q|K , ∀K ∈ Th} where Q|K is a polynomial space over the
element K. Let {φ1, ..., φN} be a basis of Xh, where N = dim(Xh), such that

∑N
i φi(x) = 1.

Consider the transport equation (1), multiply it by φ ∈ Xh, integrate over Ω and integrate by
parts the advection term to obtain∫

Ω
(∂tu)φdx = −

∑
K∈Th

∫
K
u(v · ∇φ)dx +

∑
f∈Fh

∫
f
u(v · nf )φds, (3)

where s ∈ Rd−1 and nf is the unit normal vector at face f . Let uh ∈ Xh be the finite element
approximation of u. Since uh is discontinuous across f we can’t replace u by uh in (3) or we would
obtain multiple values over f . Therefore, we define numerical fluxes associated with the internal faces
to get ∫

Ω
(∂tuh)φdx = −

∑
K∈Th

∫
K
uh(v · ∇φ)dx +

∑
f∈Fh

∫
f
{uhv · nf}∗[[φ]]ds, (4a)

where [[φ]] := φ− − φ+, φ±(x) = limξ→0+ φ(x± ξnf (x)) and

{uhv · nf}∗ = (v · nf )

(
uh|K1 + uh|K2

2

)
− 1

2
|v · nf |[[uh]], (4b)

which is known as Godunov (upwind) flux [17,19]. Method (4) can be recast in matrix-vector form as

M
dUH(t)

dt
= KUH(t), (5a)
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where UH(t) = [UH1 (t), ..., UH(t)N ]t are the DOFs of the finite element solution uh(x, t) at time t and
M and K are the mass and transport matrices whose ij-th elements are given by:

Mij =

∫
Ω
φiφjdx, (5b)

Kij = −
∫

Ω
φj(v · ∇φi)dx +

∑
f∈Fh

∫
f
{φjv · nf}∗[[φi]]ds. (5c)

The method (5) is mass conservative in the following sense:∫
Ω
uh(x, t)dx =

∫
Ω
uh(x, t = 0)dx ⇐⇒

∑
j

UHj (t)mj =
∑
j

UHj (t = 0)mj ,

where mj =
∑

i

∫
Ω φiφjdx =

∫
Ω φjdx. To see this consider the row sum of (5),

∑
i

∑
j

Mij

(
dUHj (t)

dt

)
=
∑
i

∑
j

KijU
H
j (t) =⇒

∑
j

mj

(
dUHj (t)

dt

)
=
∑
j

UHj (t)
∑
i

Kij = 0

=⇒
∑
j

UHj (t)mj =
∑
j

UHj (t = 0)mj ,

where K has zero column sums since

∑
i

Kij = −
∫

Ω
φj

[
v · ∇

(∑
i

φi

)]
dx +

∑
f∈Fh

∫
f
{φjv · nf}∗[[

∑
i

φi]]ds = 0

by partition of unity, i.e.,
∑

i φi = 1. Note that K also has zero row sums since ∇ · v = 0 is assumed.

2.2 Time Discretization

For simplicity we consider Forward Euler integration in time. However, we extend the results to high-
order approximations via Strong Stability Preserving (SSP) methods [7]. Moreover, all numerical
experiments, unless otherwise noted, are performed via a third order (three stage) Runge-Kutta SSP
method. The time discretization of (5) via Forward Euler is given by:

M

(
UH − Un

∆t

)
= KUn, (6)

where Un and UH are the DOFs of the high-order finite element solution uh(x, t) at time t = tn and
t = tn+1, respectively.
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3 Low-Order MPP Method

We consider the first-order MPP approach in [15, 16]. This method is based on applying a discrete
upwinding to the transport matrix K of a high-order scheme and lumping the mass matrix M . This
leads to

M∗
(
UL − Un

∆t

)
= K∗Un, (7a)

where M∗ and K∗ are the lumped mass matrix and the upwinded transport matrix respectively. They
are given as follows:

M∗ = M + L, (7b)

K∗ = K +D, (7c)

where L and D are given by

Lij = −Mij , Dij = max(0,−Kij ,−Kji), (7d)

for the off-diagonal elements and

Lii = −
∑
j 6=i

Lij , Dii = −
∑
j 6=i

Dij , (7e)

otherwise. Note that the lumping and upwinding are algebraic processes, and therefore the corre-
sponding low-order solution depends on the choice of the basis functions. The matrices L and −D are
algebraic diffusion matrices, i.e., they are symmetric, have non-positive off-diagonal entries and have
zero row and column sum. These are the typical characteristics of the discretization of the Laplace
operator −∆ [15]. A critical property of our DG method is that the matrices L and D are block
diagonal with Lij = Dij = 0 if nodes i and j belong to different mesh cells (see Section 6.1). The size
of diagonal blocks is given by the number of DOFs per element. The method is first order accurate.
Mass conservation in (7) follows from the fact that both K and D have zero column sums.

One can see that the above method is MPP by rewriting (7) as

ULi =
∑
j

RijU
n
j .

Here the off-diagonal entries of Rij = [(M∗)−1(M∗ + ∆tK∗)]ij are positive by the construction of M∗

and K∗, and the diagonal ones can be made positive by choosing ∆t small enough. In addition, if 1
is the vector of ones, then

R1 = (M∗)−1(M∗ + ∆tK∗)1 = (1 + ∆t(M∗)−1K∗1) = 1,

which is true since K∗1 = (K +D)1 = 0. Therefore, for any i = 1, ..., N , ULi is a convex combination
of Un.
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3.1 Low-order MPP method with positive v.s. non-positive basis functions

In this subsection we motivate our choice of the positive Bernstein polynomials, see Section 2.2 in [2],
as finite element basis functions. Additional arguments are given in Section 6.1, which shows that the
use of Bernstein polynomials results in high-order flux corrections that conserve the mass cell-wise, a
crucial characteristic we exploit in this scheme.

Given an MPP solution {U1, ..., UN}, one might be interested in the solution at locations different
than those of the DOFs; for example, if the solution is going to be used to solve other equations, one
might need the solution at the quadrature points. It is desired for this solution to be also in bounds.
Consider a finite dimensional space Xh and let {φ1, ..., φN} be a basis of Xh. The solution uh ∈ Xh, at
a point x ∈ Ω, is obtained via the interpolation uh(x) =

∑
i Uiφi(x). The solution uh(x) is guaranteed

to be in bounds provided the interpolation
∑

i Uiφi(x) is a convex combination of {U1, ..., UN}; i.e.,
provided the shape functions {φ1, ..., φN} are positive ∀x ∈ Ω and form a partition of unity. Finite
element spaces based on Bernstein polynomials are positive and form a partition of unity.

Furthermore, positive basis functions give low-order solutions of better quality. To demonstrate
this, we consider Ω = (0, 1) ⊂ R, with velocity v = 1 and initial condition given by u(x, t = 0) =
cos(2π(x − 0.5)). Periodic boundary conditions are imposed, and the initial condition is used as
exact solution at T = 1. Figure 2 compares the Bernstein solutions to the ones obtained by the
Gauss-Legendre and Gauss-Lobatto nodal bases. The solution is qualitatively similar for lower order
polynomials. However, as we increase the order, the quality of the solution with nodal basis functions
is highly reduced. With Gauss-Legendre the solution is extremely dissipated for the larger order
polynomials. With Gauss-Lobatto the solution is also more dissipated than if positive basis functions
are used but not as much as with Gauss-Legendre; however, the solution is less smooth than before.

(a) Positive basis functions (b) Gauss-Legendre nodal basis (c) Gauss-Lobatto nodal basis

Figure 2: 1D transport of a smooth function via the low-order method (7) using positive v.s. nodal
basis functions. In each case we consider polynomial spaces Q2, Q5, Q11 and Q23. The number of cells
is adjusted to have 384 DOFs in all simulations.

It is also important to note that even with positive basis functions the solution is more dissipated
as we increase the order of the polynomials. To further study this we consider the same experiment
with the same polynomial spaces but increase the number of DOFs. In Figure 3 we show the solution
with 768, 1536 and 3072 DOFs. In all cases we obtained more dissipated solutions as the order of the
polynomial space is increased. However, the solutions get closer as we increase the order. Convergence
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study for the Bernstein basis is presented in Table 1. One can see in this table that the convergence rate
is slightly increased as the order is increased. From these two results we expect that using higher-order
polynomials eventually gives better results. However, the resolution needed might be too large. This
is important to consider when the low-order method is used within the FCT methodology; i.e., this
behavior influences the quality of the high-order solution as we increase the order of the polynomial
space.

(a) 768 DOFs (b) 1536 DOFs (c) 3072 DOFs

Figure 3: 1D transport of a smooth function via the low-order method (7) using positive basis functions
with polynomial spaces Q2, Q5, Q11 and Q23. The number of cells is adjusted to have (a) 768, (b)
1536 and (c) 3072 DOFs.

Cells Q1 conv Q2 conv Q3 conv

32 1.708E-01 1.534E-01 1.385E-01

64 9.163E-02 0.898 8.186E-02 0.906 7.340E-02 0.916

128 4.752E-02 0.947 4.231E-02 0.952 3.780E-02 0.957

256 2.420E-02 0.974 2.151E-02 0.976 1.918E-02 0.979

Cells Q5 conv Q11 conv Q23 conv

32 1.189E-01 8.942E-02 6.585E-02

64 6.247E-02 0.928 4.641E-02 0.946 3.383E-02 0.961

128 3.202E-02 0.964 2.364E-02 0.973 1.715E-02 0.981

256 1.622E-02 0.982 1.193E-02 0.987 8.630E-03 0.990

Table 1: L1(Ω)-convergence of low-order method (7).

4 Edge-Based Flux Corrected Transport (DG-FCT)

In this section we revisit the Flux Corrected Transport methodology by [4] and [20], we also refer
to [13] for more details. This method interpolates between a low-order MPP and a high-order non-
MPP solution. The resulting method is denoted as DG-FCT throughout this work.
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The high-order method (6) can be rewritten as

mi(U
H
i − ULi ) =

∑
j

(M∗ −M)ij(U
H
j − Unj )−∆tDijU

n
j , (8)

where ULi is the low-order solution given by (7), and the right hand side is a flux correction. Note that
for any i = 1, . . . , N ,

∑
j(M

∗−M)ij = 0 and
∑

j Dij = 0, by the properties of the lumped matrix M∗

and the diffusive operator D. Therefore,∑
j

DijU
n
j =

∑
j 6=i

DijU
n
j +DiiU

n
i =

∑
j 6=i

(Unj − Uni )Dij =
∑
j

(Unj − Uni )Dij .

SinceD is symmetric, the pairs [(Unj −Uni )Dij , (U
n
i −Unj )Dji] form an anti-symmetric matrix. Similarly,∑

j

(M∗ −M)ij(U
H
j − Unj ) =

∑
j

(M∗ −M)ij(δUj − δUi),

where δU := UH −Un. Here the pairs [(M∗ −M)ij(δUj − δUi), (M∗ −M)ji(δUi − δUj)] also form an
anti-symmetric matrix. Let

fij := (M∗ −M)ij(δUj − δUi)−∆tDij(U
n
j − Uni ).

Then the high-order method (6) can be written as

UHi = ULi +m−1
i

∑
j 6=i

fij . (9)

In this form, it is clear that flux correction improves the accuracy of the low-order method to make it
high-order. In addition, it is responsible for the high-order solution to be in bounds. The idea behind
DG-FCT is to limit this correction whenever the solution bounds are violated. Doing this we get

Un+1
i = ULi +m−1

i

∑
j 6=i

αijfij , (10)

where αij ’s are the flux limiters computed as follows:

αij :=

min
(
R+
i , R

−
j

)
if fij ≥ 0,

min
(
R−i , R

+
j

)
otherwise,

(11a)

where

R+
i :=

min
(

1,
Q+

i

P+
i

)
, P+

i 6= 0,

1 otherwise,
R−i :=

min
(

1,
Q−i
P−i

)
, P−i 6= 0,

1 otherwise,
(11b)

P+
i :=

∑
j

max(0, fij), P−i :=
∑
j

min(0, fij), (11c)

Q+
i := mi(U

max
i − ULi ), Q−i := mi(U

min
i − ULi ). (11d)
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Here Umax
i and Umin

i are defined as local maxima and minima of UL (see below).
We refer to [2] for a numerical validation of the DG-FCT method using the low- and the high-order

methods (7) and (6), respectively.
Mass conservation follows from the symmetry properties of αij and fij , namely, the row sum of

(10) is ∑
i

mi(U
n+1
i − ULi ) =

∑
i

∑
j 6=i

αijfij =
∑
i,j 6=i

αijfij + αjifji =
∑
i,j 6=i

αij(fij − fij) = 0.

Remark 4.0.1 (Maximum Principle Preservation). Assume that UL satisfies the local discrete max-
imum principle; i.e., Umin

i ≤ ULi ≤ Umax
i for all i = 1, . . . , N . Then the solution of (10) satisfies

the local discrete maximum principle; i.e., Umin
i ≤ Un+1

i ≤ Umax
i for all i = 1, . . . , N . To see this we

follow [8, 15]. Assume that P+
i 6= 0, then using (11) we get

mi(U
n+1
i − ULi ) =

∑
j

αijfij ≤
∑

j 6=i,fij≥0

αijfij =
∑

j 6=i,fij≥0

min(R+
i , R

−
j )fij ≤

∑
j 6=i,fij≥0

R+
i fij

≤
Q+
i

P+
i

∑
j 6=i,fij≥0

fij =
Q+
i

P+
i

∑
j 6=i

max(0, fij) = Q+
i = mi(U

max
i − ULi );

therefore, Un+1
i ≤ Umax

i . If P+
i = 0, then

mi(U
n+1
i − ULi ) ≤

∑
j 6=i,fij≥0

R+
i fij = R+

i

∑
j 6=i

max(0, fij) = R+
i P

+
i = 0

for any R+
i . Provided ULi ≤ Umax

i , we get P+
i = 0 ≤ mi(U

max
i − ULi ), which implies Un+1

i ≤ Umax
i .

The lower bound Umin
i ≤ Un+1

i is proven similarly.

The DG-FCT methodology, as revisited here, produces good quality results and recovers the full
accuracy of the high-order methods when the polynomial spaces are of relatively low-order. However,
as the order of the polynomials is increased spurious oscillations are introduced. This is true even
though the method is still MPP. To illustrate this problem we consider a 1D problem with non-smooth
initial data

uh(x, t = 0) =

{
1, ∀x ∈ (0.4, 0.6)

0, otherwise
(12)

over Ω = (0, 1) ⊂ R and velocity given by v = 1 and obtain the solution using different polynomial
spaces. The results are shown in Figure 4.

In addition, we consider a more complicated non-smooth initial condition in 2D, shown in Figure 5,
with Ω = (0, 100) × (0, 100) ⊂ R2 and velocity v = (10, 10). We compute the solution at time t = 4
using Q2 and Q5 spaces with the cells adjusted to have the same number of DOFs. The results are
shown in Figure 5.

The problem is clear, as we consider higher-order spaces the oscillations become more drastic
making the solution unacceptable. In the remainder of this work we propose various approaches to
reduce these oscillations.
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Q1 with 256 DOFs Q2 with 384 DOFs Q3 with 512 DOFs Q4 with 640 DOFs

Q5 with 768 DOFs Q6 with 896 DOFs Q7 with 1024 DOFs Q8 with 1152 DOFs

Figure 4: 1D simulations with non-smooth initial data using the DG-FCT method (10) for different
polynomial spaces. In all simulations 128 cells are used and, therefore, they have different number of
DOFs.

(a) Q2, (min,max) = (−2.587 × 10−15, 1.99) (b) Q5, (min,max) = (−1.363 × 10−14, 1.632)

Figure 5: 2D simulations with non-smooth initial data using the DG-FCT method (10) for Q2 and Q5

spaces. The number of cells is adjusted so that 90000 DOFs are used in both simulations. For each
case, we show (left) the initial condition with the grid and (right) the solution at t = 4.
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5 Localized DG-FCT

The DG-FCT method from Section 4 is local in the sense given by the sparsity pattern of the transport
matrix K. For Discontinuous Galerkin finite elements this sparsity pattern includes all DOFs on a
given cell and on cells sharing a face with it, see Figure 6a. When the order of the polynomial space is
small, the sparsity pattern includes few DOFs; however, as we increase the order, the number of DOFs
in the sparsity pattern increases. The method loses locality with respect to DOFs; nevertheless, it is
fixed with respect to number of cells. In an extreme case we can consider a single cell with a polynomial
space of order as large as needed to have roughly certain number of DOFs; in this situation, the local
and global maximum principles are equivalent, since the sparsity pattern includes all DOFs in the
finite element space. This motivates the idea of considering tighter bounds. We propose to localize
the bounds by mimicking the stencil of a first-order space; i.e., for a given i-th DOF we consider those
at locations adjacent to i. Let Ni be the conventional neighborhood for the i-th DOF. For the finite
element space Qk, we use tighter bounds given by the stencil

N∗i =

{
j ∈ Ni : dist(i, j) ≤ 1

k

√
d

}
, (13)

where d ∈ {1, 2, 3} is the space dimension and dist(i, j) is the Euclidean distance between the two
DOFs’ images on the reference element. Defining N∗i with respect to the reference element makes the
approach applicable to unstructured grids. In Figure 6, we consider a representative DOF in thick
blue and show the conventional or full stencil via the sparsity pattern of the transport matrix K; in
addition, we show the tighter bounds (13), mimicking a stencil for a first-order space. Note that since
DG discretization is used we have two DOFs at the faces, this is denoted by using a red circle and a
black cross in those locations.

Remark 5.0.2 (Low-order method is non-MPP in the tighter bounds). The low-order method (7) is
guaranteed to produce an MPP solution in the conventional bounds; i.e., including all DOFs in the
sparsity pattern of K. Since the tighter bounds considers a smaller set of DOFs there is no guarantee
the low-order solution is MPP in this set.

Due to remark 5.0.2, we can’t use the DG-FCT methodology with the bounds in (2) given by the
tighter stencil (13). To overcome this we modify the bounds in (2) to be

Umin
i = min

(
ULi , min

j∈N∗i
Unj

)
, (14a)

Umax
i = max

(
ULi ,max

j∈N∗i
Unj

)
, (14b)

which guarantees the low-order solution is in bounds and, therefore, we can apply the DG-FCT
methodology. We now repeat the simulations from Section 4 using the tighter bounds (14). The
results are shown in Figures 7 and 8. We observe the oscillatory behavior, although not completely
eliminated, is highly reduced. It is clear also the high amount of dissipation introduced as the order
of the polynomial space is increased. In the next section we propose an FCT-like methodology that
reduces even more the oscillatory behavior and yields less dissipated solutions.
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(a) Full stencil (b) First-order stencil

Figure 6: Stencil to compute bounds for a representative DOF. In (a) we show the conventional or full
stencil in a DG discretization. In (b) we mimic a Q1 space. The thick blue mark represents the DOF
for which we compute the bounds, the thick black marks represent the DOFs included to compute the
bounds, the non-thick black dots in (b) represent all DOFs in the sparsity pattern of K and the red
marks indicate a double DOF for the given location (they are also considered for the computation of
the bounds).

Q1 with 256 DOFs Q2 with 384 DOFs Q3 with 512 DOFs Q4 with 640 DOFs

Q5 with 768 DOFs Q6 with 896 DOFs Q7 with 1024 DOFs Q8 with 1152 DOFs

Figure 7: 1D simulations with non-smooth initial data using the localized DG-FCT with bounds
(14). The low- and high-order methods are given by (7) and (6), respectively. We consider different
polynomial spaces. In all simulations 128 cells are used and, therefore, they have different number of
DOFs.
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(a) Q2, (min,max) = (−2.309 × 10−17, 1.976) (b) Q5, (min,max) = (−1.686 × 10−20, 1.322)

Figure 8: 2D simulations with non-smooth initial data using the localized DG-FCT method with
bounds (14) on an unstructured grid. The low- and high-order methods are given by (7) and (6),
respectively. We use Q2 and Q5 spaces with the number of cells adjusted so that 127872 DOFs are
used in both simulations. For each case, we show (left) the initial condition with the grid and (right)
the solution at t = 4.

6 Element-Based Flux Corrected Transport (DG-EFCT)

In the DG-FCT method revisited in Section 4, we start with two methods that are mass conservative.
One is low-order and MPP, and the other is high-order, but non-MPP. Then, an interpolation is made
from the low- to the high-order solution to obtain a solution that is MPP. For any DOF Un+1

i , there
are as many interpolating parameters as DOFs in the neighborhood of Un+1

i . These interpolating
parameters are designed in a way that conserves mass.

In this work we present an FCT-like method (which we denote by DG-EFCT) that considers two
MPP solutions. One is low-order and mass conservative, and the other is (presumably) high-order,
but non-conservative. Then, we interpolate from the low- to the high-order solution to recover mass
conservation cell-wise. In contrast to DG-FCT, in this method, for any DOF Un+1

i we have just one
interpolating parameter. This interpolating parameter is designed to maintain the solution in bounds.
It is important to emphasize that the recovery in mass conservation is obtained per cell and not
globally. Moreover, we propose a methodology to localize even more this redistribution of mass inside
a cell. Recovering the conservation of mass within a cell is possible due to local mass properties of the
low- and high-order methods we consider in this work and by using Discontinuous Galerkin spatial
discretization. We explain this in more detail in the next section.

6.1 Mass conservation of low- and high-order methods

In this section we show that the low- and the high-order solutions in (7) and (6) have the same mass
on any given cell K ∈ Th; i.e.,

∑
i∈NK

miU
H
i =

∑
i∈NK

miU
L
i , where NK = {i : xi ∈ K} is the set

of node numbers for the DOFs associated with K. To prove this, we rely on the specific DG finite
element formulation as well as the use of the positive shape functions described in Section 2. First,

13



we rewrite the high-order method as

mi(U
H
i − ULi ) = fHi , (15a)

where fHi is a high-order flux correction given by

fHi =
∑
j∈Ni

(M∗ −M)ijδUj −∆t
∑
j∈Ni

DijU
n
j . (15b)

Here δUj := UHj − Unj . Given any cell K ∈ Th consider∑
i∈NK

fHi =
∑
j∈Ni

δUj
∑
i∈NK

(M∗ −M)ij −∆t
∑
j∈Ni

Uj
∑
i∈NK

Dij .

It is our aim to show that
∑

i∈NK
fHi = 0 =⇒

∑
i∈NK

miU
H
i =

∑
i∈NK

miU
L
i . Since we use a DG

discretization, all shape functions are supported on a single cell. Therefore, M∗jj =
∑

i=1,...,N Mij =∑
i∈NK

Mij and, hence,
∑

i∈NK
(M∗ −M)ij = 0.

From Section 3, we recall that
∑

i∈[1,...,N ]Dij = 0. Now we show that Dij = 0 whenever i and j
belong to different cells. Recall the definition of Dij from Section 3:

Dij = max(0,−Kij ,−Kji) if i 6= j, Dii = −
∑
j 6=i

Dij (16)

We just need to consider the off-diagonal elements and assume they belong to different cells. From
Section 2.1, the i, j-th element of the transport matrix is given by

Kij = −
∫

Ω
φj(v · ∇φi)dx +

∑
f∈Fh

∫
f
{φjv · nf}∗[[φi]]ds, (17)

where the first integral is zero since i and j belong to different cells and each shape function is supported
on its corresponding cell. Recall the definition of the numerical flux:

{φv · nF }∗ = (v · nF )

(
φ|K1 + φ|K2

2

)
− 1

2
|v · nF |[[φ]], (18a)

[[φ]] = φ− − φ+, (18b)

φ±(x) = lim
ξ→0+

φ(x± ξnf (x)). (18c)

Suppose the normal vector nF points from cell K1 to cell K2. Then we get [[φ]] = φ|K1−φ|K2 . Assume
φj is supported on cell K1 and φi on cell K2, then [[φj ]] = φj |K1 and [[φi]] = −φi|K2 , which leads to

{φjv · nF }∗[[φi]] = [|v · nF | − (v · nF )]

(
φj |K1φi|K2

2

)
,
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which is non-negative regardless of the sign of v·nF provided the shape functions are positive. Similarly,
if φj is supported on cell K2 and φi on cell K1 we get

{φjv · nF }∗[[φi]] = [(v · nF ) + |v · nF |]
(
φj |K2φi|K1

2

)
,

which is also non-negative provided we use positive shape functions. Therefore, Kij ≥ 0 whenever i
and j don’t belong to the same cell. This implies that Dij = 0 whenever i and j don’t belong to the
same cell.

From
∑

i∈[1,...,N ]Dij = 0 and Dij = 0 whenever i and j don’t belong to the same cell we conclude
that

∑
i∈NK

Dij = 0. Therefore, we get∑
i∈NK

fHi =
∑
j

δUj
∑
i∈NK

(M∗ −M)ij −∆t
∑
j

Uj
∑
i∈NK

Dij = 0.

The property that the mass of the high-order flux correction is zero for any given cell is crucial for
the method presented in this work. This allows us to consider non mass conservative flux corrections
that assure the solution is in bounds and then adjust those fluxes to recover mass conservation per
cell. To do this we need to adjust the fluxes on any cell without modifying fluxes in other cells. This
is possible since we consider DG finite elements.

6.2 Clipped solution

The first stage of this method is to clip the solution considering some local bounds. We can consider
different options depending on the stencil; i.e., we can consider the full or conventional stencil Ni (figure
6a) or the tighter stencil N∗i from equation (13) (figure 6b). In either case we obtain {Umin

i , Umax
i }.

Then we consider the high-order solution UH from method (6) to get

U∗i = min
(
Umax
i ,max(UHi , U

min
i )

)
, (19)

where U∗i is the clipped solution. Note that, since N∗i ⊂ Ni, the clipped solution U∗i is in bounds in
both the tight and the full stencil, i.e.,

min
j∈Ni

Unj ≤ min
j∈N∗i

Unj ≤ U∗i ≤ max
j∈N∗i

Unj ≤ max
j∈Ni

Unj .

In Figure 9 we revisit the non-smooth 1D problem (12) and show the results of clipping the solution
with the bounds computed via the full and the tighter stencil. We use Q5 and Q11 spaces. It is clear
that non-physical oscillations are present when the full stencil is considered. For this reason we always
compute the bounds (2) using the tighter stencil N∗i (13). Next, in Figure 10 we show results of the
same problem considering different spaces and refinement levels. Two observations can be made from
this figure. First, phase errors appear due to not conserving mass. Mass conservation is addressed in
the next section. Second, the clipped solution becomes more dissipated as one considers higher order
spaces.
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(a) Q5 (b) Q11

Figure 9: Solution clipping via (19) for non-smooth initial data. We consider Q5 and Q11 spaces using
the full and the tighter stencils. The number of cells is adjusted so that 768 DOFs are used in both
simulations.

(a) 384 DOFs (b) 768 DOFs (c) 1536 DOFs

Figure 10: Solution clipping via (19) for non-smooth initial data. We consider Q2, Q5, Q11 and Q23

spaces using the tighter stencil. The number of cells is adjusted to have (a) 384, (b) 768 and (c) 1536
DOFs.
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6.3 Local recovery of mass conservation

In this section we consider the clipped solution U∗i and recover mass conservation per cell. In Section
6.1 we saw that the high-order flux correction

fHi = mi(U
H
i − ULi ) (20)

has zero mass within a cell; i.e.,
∑

i∈NK
fHi = 0,∀K ∈ Th. Given the clipped solution U∗i , define

f∗i := mi(U
∗
i − ULi ). (21)

Here f∗i is a flux correction from the low-order to the clipped solution. To recover mass conservation
per cell we need to modify the fluxes f∗i 7→ fi, so that

∑
i∈NK

fi = 0, ∀K ∈ Th. The modification of
the fluxes has to be done without creating violations of the Maximum Principle; i.e., the solution must
remain in bounds.

6.4 Mass conservation via flux scaling

To enforce local mass conservation in element K ∈ Th, define the local degree of freedom Un+1
i via

mi(U
n+1
i − ULi ) = αif

∗
i , (22)

where 0 ≤ αi ≤ 1. The nodal correction factors αi are defined so that
∑

i∈K αif
∗
i = 0. Each factor αi

contributes to enforcing local mass conservation on the element K to which the local degree of freedom
Ui belongs. Note that this is always possible. In particular, one might choose αi = 0 which gives back
the low-order solution. Assuming the low-order solution is conservative, i.e.,

∑
imiU

L
i =

∑
imiU

0
i ,

we get ∑
i

miU
n+1
i =

∑
i

miU
0
i =⇒

∫
Ω
uh(x, t)dx =

∫
Ω
uh(x, 0)dx,

i.e., the method (22) is mass conservative.

Theorem 6.4.1 (Maximum-Principle Preservation (MPP)). Given 0 ≤ αi ≤ 1 and provided U∗i and

ULi are in bounds; i.e., Umin
i ≤ U

∗/L
i ≤ Umax

i , the method (22) is MPP; i.e., Umin
i ≤ Un+1

i ≤ Umax
i ,

where Umin
i := minj∈Ni U

n
j and Umax

i := maxj∈Ni U
n
j .

Proof. Rewrite (22) as

Un+1
i = ULi + αim

−1
i f∗i = ULi + αi(U

∗
i − ULi ) = αU∗i + (1− αi)ULi .

Since 0 ≤ αi ≤ 1 and U
∗/L
i ≤ Umax

i , we get

Un+1
i ≤ αiUmax

i + (1− αi)Umax
i = Umax

i =⇒ Un+1
i ≤ Umax

i .

The lower bound is proven similarly.
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There are different strategies to choose the interpolating parameters. A first approach, which we
refer to as uniform scaling, is to scale down the dominant fluxes by the same factor. Consider a
representative cell K ∈ Th and define

S+
K =

∑
f∗
i
>0

i∈NK

f∗i , S−K =
∑
f∗
i
<0

i∈NK

f∗i .

If S+
K + S−K > 0, i ∈ NK , we choose

αi :=

−
S−K
S+
K

if f∗i > 0,

1 otherwise.
(23a)

If S+
K + S−K < 0, i ∈ NK , we choose

αi :=

1 if f∗i ≥ 0,

−S+
K

S−K
otherwise,

(23b)

and if S+
K + S−K = 0 then αi = 1. It is easy to see that 0 ≤ αi ≤ 1 and

∑
i∈NK

αif
∗
i = 0,∀K ∈ Th.

We refer to the combination of the DG-EFCT method and this uniform scaling approach as the
DG-EFCT-U method.

Another option for choosing the interpolating parameters {αi} is to solve the following minimization
problem:

min
αi

∑
i

(Un+1
i − UHi )2 = min

αi

∑
i

(αif
∗
i − fHi )2 (24a)

such that

0 ≤ αi ≤ 1,
∑
i∈NK

αif
∗
i = 0, (24b)

for all cells K ∈ Th. One can find many more strategies to find the interpolating parameters {αi}.
Bochev et al. [3] used this kind of constrained optimization in the context of conservative remapping.
However, in their flux-variable flux-target (FVFT) algorithm, local mass conservation was enforced
by imposing the anti-symmetry constraint on the fluxes leading to a global inequality-constrained
quadratic programming problem, which has relatively high computational cost. As an alternative the
authors developed a globally conservative mass-variable mass-target (MVMT) remap method which
is more efficient. In contrast, in our DG method, the optimization problems for {αi} are decoupled
(i.e. they are local to each element) and can be solved in parallel.

In Figure 11 we show results of the non-smooth 1D problem (12) computed by the DG-EFCT-U
method (23) and the minimization problem (24) with Q2, Q5, Q11 and Q23 spaces. The number of
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cells is adjusted to have 768 DOFs in all simulations. We can easily identify a problem, namely, the
solution is more dissipated as we consider higher-order spaces. We recall from Figures 3 and 10 that
the low-order method and the clipping process produce more dissipative results as we increase the
order, which is part of the problem. In addition, the flux scaling used to recover mass conservation is
introducing additional dissipation as the order is increased.

The recovery of mass conservation is performed cell-wise. When higher-order spaces are used,
more DOFs have to be considered within a cell in order to achieve this. Therefore, locality is lost
with respect to DOFs. Motivated by this, in the following section we propose a process to recover
mass conservation that is more localized, that is, the distribution of mass is performed differently in
different parts of a given cell.

(a) Uniform scaling (b) L2 minimization

Figure 11: 1D simulations with non-smooth initial data via the uniform scaling (23) v.s. the L2
minimization problem (24) for the recovery of mass conservation. We consider Q2, Q5, Q11 and Q23

spaces. The number of cells is adjusted to have 768 DOFs in all simulations.

6.5 Mass conservation via penalization

In this section the recovery of mass conservation is localized at sub-cell level. We discuss two possible
strategies.

In [5], a repair approach is used to obtain an MPP mass conservative method. This repair considers
a given cell and those adjacent to it. If a criteria-satisfying solution cannot be found, more cells are
considered, until a mass conservative, in bounds, solution is obtained. We can apply this idea to
redistribute the mass restricted to a cell, i.e., consider a DOF within a cell and try to distribute the
mass considering just adjacent DOFs in such a way that the mass for this set of DOFs equals the
mass of the high-order flux fH on the set. If that is impossible without violating the MPP, we would
consider a larger set. In the worst case scenario, we would have to consider the entire cell and use an
approach similar to those presented in Section 6.4.

Another approach to distribute the mass within a cell is as follows. In [12], the author obtains a
solution in bounds by clipping the solution and doing a global fix in mass using a Lagrange multiplier.
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We use that same idea, but restricted to a single cell. Suppose the mass error is positive in cell
K, namely, δK :=

∑
i∈NK

f∗i > 0. The final solution is based on the fluxes {f̄i}, which provide a
mass-conservative penalization of the fluxes {f∗i }:

mi(U
n+1
i − ULi ) = f̄i, where f̄i =


f∗i if f∗i ≤ 0,

f∗i − λKwi if f∗i > 0 and f∗i − λKwi ≥ 0,

0 if f∗i > 0 and f∗i − λKwi < 0.

(25a)

In this case (when δK > 0) negative fluxes are not penalized, but every f∗i > 0 is modified to f̄i ∈ [0, f∗i ).
Each quantity wi > 0 (defined later) controls the amount of penalization applied to the flux f∗i . The
common factor λK > 0 (also defined later) is used to retain mass conservation. Before going into
the details of wi and λK , we point out that the formulation (25a) is MPP. More specifically, Un+1

i is
always between ULi and U∗i , which are both in bounds.

Looking at (25a), one can see that the choice wi = f∗i reduces to the method of uniform scaling
(23), where all positive fluxes are scaled with the same constant. Starting from the idea that we
prefer to penalize fluxes that are different from the high-order ones, we could construct a non-uniform,
localized penalization terms wi = mi|U∗j −UHj |. However, this choice is too aggressive, over-correcting
in a way that is not smooth. The localization can be relaxed by taking a maximum over a local
neighborhood, i.e., wi = maxj∈N∗i mi|U∗i − UHi |. This choice localizes penalizations only to those
values which were diffused to satisfy bounds plus the immediate stencil. An important requirement is
that wi > 0 whenever f∗i > 0, because having some wi = 0 implies that the flux f∗i is not penalized,
which may lead to a situation where mass conservation cannot be restored. The final step in producing
a smoother penalization is to blend the localized and uniform formulations with a tunable parameter,
so that:

wi = (1− θ)f∗i + θ max
j∈N∗i

mj |U∗j − UHj | > 0, (25b)

where θ ∈ [0, 1) and N∗i is the tighter stencil described in Figure 6. Higher θ increases of the influence
of the localized penalization; i.e., big differences with the high-order solution increase the penalization
amount, which in the worst case makes f̄i = 0, and thus Un+1 = UL.

Having all penalization terms wi > 0, we compute λK by solving the non-linear equation∑
i∈NK

f̄i(λK) = 0, (26)

and thus enforcing mass conservation. Note that each function f̄i(λK) is continuous, piecewise linear
and non-increasing, hence the same holds for their sum. Furthermore,∑

i∈NK

f̄i(0) =
∑
f∗i <0

f∗i +
∑
f∗i ≥0

f∗i = δk > 0,
∑
i∈NK

f̄i(+∞) =
∑
f∗i <0

f∗i ≤ 0,

hence (26) defines a unique λK if at least one f∗i < 0, otherwise the solutions for λK are an interval of
the form [λ∗,+∞). Note that by definition wi > 0 whenever f∗i > 0.
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The case δK < 0 is treated similarly, so that penalization is applied to the negative fluxes:

mi(U
n+1
i − ULi ) = f̄i, where f̄i =


f∗i if f∗i ≥ 0,

f∗i − λKwi if f∗i < 0 and f∗i − λKwi ≤ 0,

0 if f∗i < 0 and f∗i − λKwi > 0,

(27a)

wi = (1− θ)f∗i − θ max
j∈N∗i

mj |U∗j − UHj | < 0. (27b)

In this case equation (26) defines a unique λK , because each function f̄i(λK) is continuous, piecewise
linear and non-decreasing, and∑

i∈NK

f̄i(0) =
∑
f∗i >0

f∗i +
∑
f∗i ≤0

f∗i = δk < 0,
∑
i∈NK

f̄i(+∞) =
∑
f∗i >0

f∗i ≥ 0.

We refer to the combination of the DG-EFCT method and this non-linear penalization approach
as the DG-EFCT-N method. In Figure 12, we consider the non-smooth 1D problem (12) and compare
the results using the DG-EFCT-U and the DG-EFCT-N (with θ = 0.99) methods. The improvement
in the solutions is clear.

(a) Uniform scaling (b) Localized mass redistribution via penalization

Figure 12: 1D simulations with non-smooth initial data. Comparison between the (a) DG-EFCT-U
and (b) DG-EFCT-N methods. We consider Q2, Q5, Q11 and Q23 spaces. The number of cells is
adjusted to have 768 DOFs in all simulations.

7 Applicability to Advection Based Remap

Because the original motivation behind this study was in the context of advection based finite element
remap, and remap results are presented in Section 8, this section is needed to establish the connection
between advection remap and the spatial discretization from Section 2.1. Detailed description of the
DG advection based remap is given in [2], and only the major points are repeated here for completeness.
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The goal of remap is to transfer a field ρ, defined on initial spatial domain Ω̃ ⊂ Rd, to a new
domain, Ω ⊂ Rd. For two corresponding points x̃ ∈ Ω̃ and x ∈ Ω, we define a continuous transition
function F (x̃, τ) : Ω̃× [0, 1]→ Rd and pseudo-velocity v(x̃, τ), such that

F (x̃, 0) = x̃, F (x̃, 1) = x, v(x̃, τ) =
∂F

∂τ
.

Here τ is pseudo-time in which the domain Ω̃ transitions to Ω. Then one can introduce the concept
of pseudo-material derivative along the trajectories x(τ) = F (x̃, τ) as

d

dτ
ρ(x(τ), τ) =

∂ρ

∂τ
+ v · ∇ρ.

Because the goal of remap is to preserve the initial field with respect to an Eulerian frame, i.e. ∂ρ
∂τ = 0,

one commonly used approach for remap is to define ρ by solving the pseudo-time advection equation

dρ

dτ
= v · ∇ρ. (28)

Utilizing the Reynolds transport theorem, basis functions that follow the pseudo-time deformation
(i.e. dφ

dτ = 0) and (28), one can obtain

d

dτ

∫
U(τ)

ρφ dx = −
∫

Ω(τ)
ρv · ∇φdx +

∫
∂Ω(τ)

ρv · nφds. (29)

Then choosing ρh ∈ Xh as a finite element approximation of ρ, and using the Section 2.1 definitions
of jump and average across faces, the semi-discrete approximation of (29) becomes

d

dτ

∫
Ω
ρhφdx = −

∑
K∈Th

∫
K
ρh(v · ∇φ) dx +

∑
f∈Fh

∫
f
{ρhv · nf}∗[[φ]] ds. (30)

Note that the corresponding matrix-vector form can be written in terms of the matrices M and K
from (5), namely,

d

dτ
(Mρ) = Kρ,

where ρ is the vector of unknowns. Since the mesh x(τ) is moving, M and K depend on τ . Therefore,
the system of ordinary differential equations for ρ has the form

M
dρ

dτ
=

(
K − dM

dτ

)
ρ, (31)

with advection matrix(
K − dM

dτ

)
ij

=

∫
Ω(τ)

φi(v · ∇φj)dx−
∑

f∈Fh(τ)

∫
f
(φiv · nf )d[[φj ]]ds,
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where (φiv · nf )d denotes the downwind flux:

(φiv · nf )d = (v · nf ){φi}+
1

2
|v · nf |[[φi]].

It is instructive to view this advection matrix as the standard matrix K plus a correction term that
takes into account the mesh motion dx

dτ = v. Without going into details (see Section 3 in [2]), discrete

lumping of M and upwinding of K − dM
dτ results in a conservative and monotone low-order method.

Therefore, the aforementioned FCT methods can be applied to the problem (31) in order to obtain
monotone and conservative high-order solution.

8 Numerical Examples

First we summarize some of the results that were already shown in the preceding sections:

• The positive Bernstein basis is an appealing option in the context of high-order monotone ad-
vection, see Figures 2, 3, and Table 1.

• The localized DG-FCT method (Figures 7 and 8) controls oscillations much better than the
DG-FCT method (Figures 4 and 5).

• In the DG-EFCT methods with high-order spaces, the clipped solution benefits from using the
localized bounds, see Figure 9.

• For high-order spaces, the DG-EFCT-N method is sharper than the DG-EFCT-U method and
the minimization based approach (24), see Figures 12 and 11.

In this section we show additional results for the DG-EFCT-N method. We begin by presenting
the method’s convergence properties on smooth and non-smooth problems. Next, we consider 2D
advection of non-trivial Q5 functions and compare the DG-FCT, localized DG-FCT, DG-EFCT-U
and DG-EFCT-N methods. Finally, we show the DG-EFCT-N method’s behavior in the context of
2D and 3D advection remap of complex Q5 functions.

All presented simulations use the parameter θ = 0.99 and finite element functions are represented
in the Bernstein basis. All experiments, unless otherwise noted, are performed via a third order Runge-
Kutta SSP method. All results are generated with the finite element methods library MFEM [1].

8.1 Convergence tests

In this section we perform a series of convergence tests on the DG-EFCT-N method.
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2D smooth profile without local extrema

Consider an initial condition given by

uh(x, y, t = 0) = tanh((y − 0.5)/0.25), (32a)

over Ω = (0, 1)× (0, 1) with velocity

(u, v) = (sin(πx) cos(πy) sin(2πt),− cos(πx) sin(πy) sin(2πt)). (32b)

Since the velocity field is periodic and the problem is linear the exact solution at T = 1 coincides with
the initial condition. We consider Q1, Q2 and Q3 spaces and show the corresponding convergence
results in Table 2. We obtain the expected convergence rates.

h L1 error conv

1.25E-01 6.85E-03

6.25E-02 1.77E-03 1.94

3.13E-02 4.18E-04 2.08

1.56E-02 1.01E-04 2.05

(a) Q1 space

h L1 error conv

6.25E-02 5.30E-04

3.13E-02 6.18E-05 3.09

1.56E-02 6.91E-06 3.16

7.81E-03 7.73E-07 3.15

(b) Q2 space

h L1 error conv

4.17E-02 5.12E-05

2.08E-02 3.66E-06 3.80

1.04E-02 2.19E-07 4.06

5.21E-03 1.15E-08 4.25

(c) Q3 space

Table 2: L1(Ω)-convergence using the DG-EFCT-N method with a smooth initial profile without local
extrema.

1D non-smooth profile

Next we consider the problem with non-smooth initial data from Section 4, equation (12). The problem
is solved using the DG-EFCT-N method and, for reference, the discontinuous Galerkin discretization
without limitation, i.e., the high-order method from Section 2.1. Table 3 shows convergence rates for
Q1, Q2 and Q3 spaces. Table 4 presents a similar comparison for Q2, Q5 and Q11 spaces. Note that, in
Table 4, the number of cells is adjusted to have the same number of DOFs in each row, allowing a fair
comparison between the errors produced by the different spaces. The DG-EFCT-N method generally
produces larger errors on coarser grids, which is expected, since the low order and the clipped solutions
are more dissipated for higher order polynomials. For all spaces we obtain convergence rates close to
the optimal rate of 1. Up to Q5, we observe better rates as we increase the polynomial degree.

1D smooth profile with local extrema

Finally we consider as initial condition

uh(x, t = 0) = cos(2π(x− 0.5)),
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NDOFs L1 error conv

64 6.17E-02

128 3.69E-02 0.74

256 2.19E-02 0.75

512 1.30E-02 0.75

(a) DG with Q1

NDOFs L1 error conv

96 3.24E-02

192 1.85E-02 0.81

384 1.05E-02 0.81

768 5.91E-03 0.83

(b) DG with Q2

NDOFs L1 error conv

128 2.24E-02

256 1.22E-02 0.87

512 6.75E-03 0.85

1024 3.64E-03 0.89

(c) DG with Q3

NDOFs L1 error conv

64 5.37E-02

128 3.11E-02 0.78

256 1.81E-02 0.77

512 1.06E-02 0.77

(d) DG-EFCT-N with Q1

NDOFs L1 error conv

96 3.36E-02

192 1.82E-02 0.88

384 9.85E-03 0.88

768 5.38E-03 0.87

(e) DG-EFCT-N with Q2

NDOFs L1 error conv

128 2.73E-02

256 1.38E-02 0.98

512 7.35E-03 0.90

1024 3.88E-03 0.92

(f) DG-EFCT-N with Q3

Table 3: L1(Ω)-convergence of (a)-(c) discontinuous Galerkin discretization and (d)-(f) the DG-EFCT-
N method for a non-smooth initial profile. We consider Q1, Q2 and Q3 spaces.

NDOFs L1 error conv

192 1.85E-02

384 1.05E-02 0.81

768 5.91E-03 0.83

1536 3.32E-03 0.83

(a) DG with Q2

NDOFs L1 error conv

192 1.24E-02

384 6.70E-03 0.89

768 3.89E-03 0.78

1536 2.00E-03 0.96

(b) DG with Q5

NDOFs L1 error conv

192 1.39E-02

384 6.35E-03 1.12

768 3.50E-03 0.86

1536 1.63E-03 1.09

(c) DG with Q11

NDOFs L1 error conv

192 1.82E-02

384 9.85E-03 0.88

768 5.38E-03 0.87

1536 2.95E-03 0.86

(d) DG-EFCT-N with Q2

NDOFs L1 error conv

192 2.25E-02

384 1.07E-02 1.06

768 5.65E-03 0.92

1536 2.69E-03 1.07

(e) DG-EFCT-N with Q5

NDOFs L1 error conv

192 3.51E-02

384 2.00E-02 0.81

768 1.08E-02 0.88

1536 6.14E-03 0.81

(f) DG-EFCT-N with Q11

Table 4: L1(Ω)-convergence of (a)-(c) discontinuous Galerkin discretization and (d)-(f) the DG-EFCT-
N method for a non-smooth initial profile. We consider Q2, Q5 and Q11 spaces and adjust the number
of cells to have the same number of DOFs for each refinement of the convergence test.
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over Ω = (0, 1) with velocity v = 1. We impose periodic boundary conditions and use the initial
condition as exact solution at T = 1. We use Q1, Q2 and Q3 to perform a convergence test via the
DG-EFCT-N method and, for reference, the discontinuous Galerkin discretization from Section 2.1.
The results are shown in Table 5. One can see that no better than (slightly higher than) second order
is achieved. This issue is already discussed in [2], where the authors show that the dominating error
is localized in the extremal regions, while high-order accuracy is obtained in the rest of the domain.
Additional details about this problem can be found in [9], where it is shown that Total Variation
Diminishing (TVD) methods can’t achieve better than second order convergence (in the L1 norm)
around local extrema. To resolve this problem within the context of finite volumes, it is common
to allow small violations on the total variation near local extrema. Popular examples are UNO [9],
ENO [10,11] and WENO [18] methods. In [21,22], finite volumes and discontinuous Galerkin methods
are used to obtain a solution that satisfies a strict (or global) maximum principle. To achieve high-
order accuracy at local extrema, the authors reconstruct a polynomial inside cells from where the
bounds are computed. A parameter-free smoothness indicator based on a hierarchical slope limiter
for high-order DG methods may be used as regularity criterion for deactivation of FCT corrections at
smooth extrema [14].

NDOFs L1 error conv

64 1.52E-03

128 3.57E-04 2.08

256 8.63E-05 2.04

512 2.12E-05 2.02

(a) DG with Q1

NDOFs L1 error conv

96 1.94E-05

192 2.42E-06 3.00

384 3.02E-07 3.00

768 3.78E-08 3.00

(b) DG with Q2

NDOFs L1 error conv

128 2.40E-07

256 1.50E-08 4.00

512 9.35E-10 4.00

1024 5.93E-11 3.97

(c) DG with Q3

NDOFs L1 error conv

64 2.93E-03

128 6.73E-04 2.12

256 1.55E-04 2.12

512 3.57E-05 2.11

(d) DG-EFCT-N with Q1

NDOFs L1 error conv

96 3.61E-03

192 6.96E-04 2.37

384 1.29E-04 2.43

768 2.33E-05 2.46

(e) DG-EFCT-N with Q2

NDOFs L1 error conv

128 1.99E-03

256 3.82E-04 2.38

512 7.04E-05 2.43

1024 1.22E-05 2.53

(f) DG-EFCT-N with Q3

Table 5: L1(Ω)-convergence of (a)-(c) discontinuous Galerkin discretization and (d)-(f) the DG-EFCT-
N method for a smooth initial profile with local extrema. We consider Q1, Q2 and Q3 spaces.

8.2 2D advection with constant velocity field

We consider Ω = (0, 100) × (0, 100) ⊂ R2, velocity v = (10, 10) and the discontinuous initial profile
shown in the left panel in Figure 13. The cross shape is specified by the −45 degree rotation of the
region (x, y) ∈ (7, 10) × (32, 13) ∪ (14, 3) × (17, 26), The lower ring’s origin is at (x, y) = (40, 20)
and its radii are 3 and 7. The upper ring’s origin is at (x, y) = (40, 40) and its radii are 7 and 10.
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The advected function is initialized to 1 in the aforementioned subdomains, and to 0 in the rest of
the domain. We compute the solution using the DG-EFCT-U method (equations (22) and (23)) and
DG-EFCT-N method (equations (25) and (27)). The results are shown in Figure 13. For comparison
we also show the results of the DG-FCT revisited in Section 4 and the localized DG-FCT from Section
5. For all situations we use Q2 and Q5 spaces with number of cells adjusted to have 90000 DOFs.

(a) Q2. From left to right: (min,max) = (0, 2), (−1.294 × 10−15, 1.99), (−2.309 × 10−17, 1.976), (−1.690 ×
10−18, 1.952) and (−8.207 × 10−17, 1.962).

(b) Q5. From left to right: (min,max) = (0, 2), (−1.686 × 10−20, 1.322), (−6.813 × 10−15, 1.642), (−5.444 ×
10−18, 1.582) and (−1.271 × 10−16, 1.772).

Figure 13: 2D advection with constant velocity field. We consider (a) Q2 and (b) Q5 spaces with
number of cells adjusted to have 90000 DOFs in all situations. Left: initial condition with the mesh.
Middle-left: solution via the DG-FCT method (10). Middle-middle: solution via the localized
DG-FCT method from Section 5. Middle-right: solution via the DG-EFCT-U method (22), (23).
Right: solution via the DG-EFCT-N method (25), (27).

8.3 2D solid body rotation on unstructured mesh

To be consistent with the previously presented results in [2], we examine the behavior of the DG-
EFCT-N method for the solid body rotation benchmark. For this test problem the DG-EFCT-N
method is utilized as a tool for remapping fields, as described in Section 7. Description of the initial
conditions is given in [2], Section 4.3.

Lagrangian mesh motion is prescribed through the velocity field v(x, y) = 0.1(y,−x). Each La-
grangian step rotates the mesh without modifying the discrete representation of the field. Each
Lagrangian step is followed by a remesh / remap step where the mesh nodes are returned to their
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original locations and the field is remapped between the two resulting meshes. This procedure results
in the field’s full 360 degree rotation about the origin at final time 2π/0.1.

Two cases are considered, each with the same total number of degrees of freedom (dof):

1. A fine mesh using Q2 discontinuous elements (9 dof/element).

2. A coarse mesh using Q5 discontinuous elements (36 dof/element).

For each case the DG-EFCT-N method is compared to the DG-FCT method used in [2]. All simulations
use a fixed Lagrangian time step of size 5 × 10−2. Each remap procedure performs five pseudo-time
steps, and each pseudo-time step utilizes an explicit RK2 time integration.

Initial conditions and fields at final time for Q2 and Q5 are shown in Figure 14 and Figure 15,
respectively. In Figure 14, one can see that both methods produce results of similar quality, with the
DG-FCT method being slightly sharper. However, for the Q5 case, it is clear in Figure 15 that the
DG-FCT method develops spurious (but monotone) oscillations that eventually distort the original
shapes. The improvement in quality with the DG-EFCT-N method is clear.

Figure 14: 3D view (top) and 2D view (bottom) of Q2 fields (left to right): initial condition, DG-FCT
result, DG-EFCT-N result.
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Figure 15: 3D view (top) and 2D view (bottom) of Q5 fields (left to right): initial condition, DG-FCT
result, DG-EFCT-N result.

8.4 3D Advection of “Balls and Jacks”

Here we consider a full 3D version of the “balls and jacks” advection benchmark. As with the previous
section, we use the DG-EFCT method as a tool for remapping fields, as described in Section 7. This
non-trivial test problem addresses the case of multi-material remap.

The computational mesh consists of a box of 323 elements in the domain Ω = (0, 100)3. Lagrangian
mesh motion is prescribed through the velocity field v(x, y, z) = 1√

2
(10, 10, 10) and the problem is run

to a final time of t = 6.
We consider three non-overlapping subdomains. The subdomain Ω2 consists of the shape

(x, y, z) ∈ (7, 32)× (10, 13)× (10, 13) ∪ (14, 17)× (3, 26)× (10, 13) ∪ (14, 17)× (10, 13)× (3, 26),

rotated by −45 degrees in the xy-plane, together with the shell (difference of two balls) centered at
(x, y, z) = (40, 20, 20) with radii 3 and 7, and the shell centered at (x, y, z) = (40, 40, 40) with radii 7
and 10. The subdomain Ω3 consists of the shape

(x, y, z) ∈ (2, 27)× (30, 33)× (30, 33) ∪ (9, 12)× (23, 46)× (30, 33) ∪ (9, 12)× (30, 33)× (23, 46),

together with the ball centered at (x, y, z) = (40, 20, 20) with radius 3, the ball centered at (x, y, z) =
(40, 40, 40) with radius 7, and the shell centered at (x, y, z) = (40, 20, 20) with radii 7 and 10. The

29



last subdomain is Ω1 = Ω/(Ω2∪Ω3). We advect three functions that correspond to these subdomains,
namely,

η1(x) =

{
1 if x ∈ Ω1,

0 otherwise,
η2(x) =

{
1 if x ∈ Ω2,

0 otherwise,
η3(x) =

{
1 if x ∈ Ω3,

0 otherwise.

We use Q5 discontinuous elements which consist of 216 DoF per element in 3D. All simulations use
a fixed Lagrangian time step of size 2 × 10−3. The remap process occurs every 20 Lagrangian steps
using an explicit RK2 time integration with a dynamically calculated pseudo timestep. Two cases are
considered: using DG-FCT and using the new DG-EFCT-N method.

Initial conditions and results at the final time for each Q5 calculation are shown in Figure 16,
which illustrates the field

η = η1 + 2η2 + 3η3.

As with the previous 2D result for the Q5 case, it is clear in Figure 16 that the DG-FCT method devel-
ops spurious (but monotone) oscillations that completely distort the original shapes. The improvement
in quality with the new DG-EFCT-N method is clear.

Figure 16: Iso-surface plot (top) and 3D volume rendering with transparency (bottom) of Q5 fields
(left to right): initial condition, DG-FCT result, DG-EFCT-N result.
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9 Conclusion

We have presented a new method that addresses robustness issues with monotone advection of high-
order (above Q3) DG finite element spaces. The DG-EFCT-N method is based on the combined
effects of Bernstein polynomial basis functions, DG approximation, localized bounds, element-based
flux corrections, non-linear local mass redistribution. Results have been presented for finite element
spaces up to Q23 in 1D and Q5 in 2D. The DG-EFCT-N method obtains optimal convergence rates for
both smooth and non-smooth fields, produces monotone solutions, and eliminates spurious oscillations.
produces maximum principle preserving solutions and highly reduces spurious oscillations; indeed, in
the numerical experiments we performed we didn’t observe oscillatory behavior.

A future area of research will be to fully incorporate the new method in the context of high-order
curvilinear ALE hydrodynamics, where the goal is to remap composite fields in a synchronized way,
e.g., remap of mass while preserving bounds for density. We also plan to extend the presented methods
with interface sharpening techniques.
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